THE SYNTHESIS OF NEW AROMATIC PROSTACYCLIN ANALOG

Katsuichi SHIMOJI and Masaki HAYASHI ON0 Pharmaceutical Co. Ltd., Research Institute 3-l-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan

The new aromatic prostacyclin analog 3a and 3b were synthesized from the allylic alcohol 5 in high regio- and stereoselectivity.

Prostacyclin (PGI₂, 1) possesses the remarkable biological property of inhibiting the fatal effects caused by thromboxane A_2 . There is, however, an obstacle to the use of PGI₂ (1) as a therapeutic agent, owing to its instability.¹ To achieve tissue selectivity and metabolic stability, several stable PGI₂-analogs have been prepared.² The 9(0)-methano-PGI₂ (2) is the most stable analog of those reported, and possesses a potency comparable to the natural $PGI₂$ (1) .^{2a}

Introduction of an aromatic ring to the 9(0)-methano-PGI₂ (2), retaining the sp² character of C-S and C-6, would afford important information on the structure-activity relationship between PGI₂ (1) and its analogs. We, therefore, prepare the aromatic PGI₂-analog 3a and 3b.

The readily available regioisomeric mixture of the β -keto ester $\underline{4}^3$ was converted to the desired allylic alcohol $\frac{5}{2}$ in 58% yield, along with the isomer $\frac{6}{2}$ in 35% yield,⁴ in 4-steps: (1) NaBH_A, MeOH, -20 °C; (2) MeSO₂C1-Et₃N, CH₂C1₂, 0 °C; (3) DBU, benzene, RT; (4) DIBAL, toluene, -40 $^{\circ}$ C. The structures of compound 5 and its isomer 6 were confirmed by Pmr spectra using double resonance method.4

Pyridinium dichromate oxidation⁵ of the allylic alcohol 5 in methylene chloride at room temperature yielded the ene-aldehyde $\frac{7}{1}$ (Pmr (CDC1₃) 6 9.75 (s, 1H), 6.72 (m, 1H), and 4.00 (m, 1H) ppm; ir (liquid film), 1680, 1620, and 1610 cm^{-1}) in 80% yield. Condensation of 7 with methoxymethylidenetriphenylphosphorane in DMSO-THF (1 : 1) at 0 °C gave the conjugated enol-

 cooch_3

 $\mathbf H$

THP

 13

 $Y = CH_2OCH_2Ph$

ether 8 as a stereoisomeric mixture (Pmr (CDC1₇) 6 3.64 and 3.58 (2s, 3H, OCH₃ for E- and Zisomer respectively) ppm; ir (liquid film), 1640 and 1600 cm^{-1} (enol-ether double bond)) in 95% yield in a ratio of <u>ca</u>. <u>E</u> : <u>Z</u> = 7 : 3. The Diels-Alder reaction of <u>8</u> with methyl propiolate in toluene at 100 °C, followed by aromatization (SiO₂, CH₂C1₂, RT) gave exclusively the desired product $9 \, (\text{Pmr} \, (\text{CDC1}_3) \, \delta \, 7.85 \, (\text{m}, 2\text{H})$, 7.22 (d, 1H), and 3.88 (s, 3H) ppm; ir (KBr), 1710 cm⁻¹) in 65% yield.

Introduction of 11α -OH to 9 was effected with high regio- and stereoselectivity by treatment with N-bromosuccinimide in 1% aq-IMSO to give the desired bromohydrin $\underline{10}$ (\underline{R}_f 0.46 (5% ethyl acetate in CH_2Cl_2); Pmr (CDCl₃) δ 4.26-3.77 (m, 2H) and 3.88 (s, 3H) ppm) in 96% yield along with a small amount of the position-isomer $\underline{11}$ (\underline{R}_f 0.26; Pmr (CDC1₃) 6 4.65 (m, 1H), 4.42 (m, 1H), and 3.88 (s, 3H) ppm). 6 Debromination of 10 (Bu₃SnH, AIBN, hv, benzene, 15 °C), followed by tetrahydropyranylation (DHP, CH_2Cl_2 , p-TsOH, RT) gave the compound 13 in quantitative yield. Lastly, the resultant ester 13 could be transformed to the alcohol 14 by the standard method: (1) DIBAL, toluene, -40 °C; (2) pyridinium dichromate, CH_2Cl_2 , RT ; 5 (3) $Bu_3P=CHCOOMe$, $CHCl_3$, RT; (4) $H_2/Pd-C$, EtOAc-MeOH).

The aromatic PGI₂ analog $3a^7$ was readily prepared from the alcohol 14 by the previously reported sequence: (1) SO_5 -Pyridine complex, Et₃N, IMSO, RT; (2) dimethyl 2-oxoheptylphosphonate, aq-NaOH, toluene, 50 °C; (3) NaBH₄, MeOH, -40 °C; (4) AcOH-H₂O-THF = 2 : 1 : 1, 50 °C).⁸ Hydrolysis of the methyl ester 3a in aqueous methanolic sodium hydroxide solution produced the acid $3b^9$ quantitatively.

Contrary to expectations, the aromatic PGI_2 -analog $\underline{3a}$ and $\underline{3b}$ did not show any PGI_2 -like biological properties.

References and Footnotes

- 1. **S.** Moncada, R. Gryglewski, S. Bunting, and J. R. Vane, Nature (London), 263, 663 (1976); R. A. Johnson, D. R. Morton, J. H. Kinner, R. R. Gorman, J. C. McGuire, F. F. Sun, N. Whittaker, S. Bunting, J. Salmon, S. Moncada, and J. R. Vane, Prostaglandins, 12, 915 (1976); K. C. Nicolaou, G. P. Gasic, and W. E. Barnette, Angew. Chem. Int. Ed. Engl., 17, 293 (1978).
- 2. a) For 9(O)-methano-PG12: K. C. Nicolaou, W. J. Sipio, R. L. Magolda, S. Seitz, and W. E. Barnette, J. Chem. Sot. Chem. Ccmnmm., 1067, (1978); **K. Kojima** and K. Sakai,

Tetrahedron Lett., 3743 (1978); M. Shibasaki, J. Uda, and S. Ikegami, Tetrahedron Lett., 443 (1979). b) For 9(0)-thia-PGI₂: K. Shimoji, Y. Arai, and M. Hayashi, Chem. Lett., 1375 (1978); K. C. Nicolaou, W. E. Barnette, G. P. Gasic, and R. L. Magolda, J. Am. Chem. Sot., 99, 7736 (1977); M. Shibasaki and S. Ikegami, Tetrahedron Lett., 559 (1978). c) For 6,9-aza-PGI₂: G. L. Bundy and J. M. Baldwin, Tetrahedron Lett., 1371 (1978). d) For aromatic PGI₂: K. C. Nicolaou, W. E. Barnette, and R. L. Magolda, J. Am. Chem. Soc., 101, 766 (1979).

- 3. Y. Konishi, M. Kawamura, Y. Arai, and M. Hayashi, Chem. Lett., 1437 (1979).
- 4. The compound 5: Pmr $(CDC1_{7})$ δ 7.32 (m, 5H), 5.88 (d of t, 1H), 5.66 (d of t, 1H), 5.48 (m, 1H , 4.53 (s, 2H), 4.16 (d, 2H), 3.70 (m, 1H, H^{a}), and 3.40 (m, 2H) ppm; ir (liquid film), 3370, 1492, and 738 cm⁻¹; MS m/e 256 (M); R_f 0.20 (ethyl acetate-cyclohexane, 1 : 3). The isomer <u>6</u>: Pmr $(CDC1₃)$ δ 7.33 (m, SH), 5.70 (d Of t, 1H), 5.44 (d of t, 1H), 5.36 (m, 1H), 4.55 (s, 2H), 4.20 (s, 2H), 3.58 (d of d, 1H), 3.50 (m, 1H, H^p or H^e), 3.23 (m, 1H, H^p or H^C), and 3.21 (d of d, 1H) ppm; ir (liquid film), 3400, 1493, and 730 cm⁻¹; MS m/e 256 (M); R_f 0.27.
- 5. E. J. Corey and G. Schmidt, Tetrahedron Lett., 399 (1979).
- 6. Initially, the bromonium cation should approach from the less steric hindered β-site, and secondary, the hydroxide anion should attack the 11-carbon, because of 1,2-cis repulsion in cyclopentane ring, from α -site. Similar selectivity was also observed in the synthesis of the 9(0)-methano-PGI₂ from the β -keto ester $\frac{4}{3}$.
- 7. Pmr (CDC13) 6 7.04 (m, 3H), 5.50 (m, 2H), 4.05 (m, lH), 3.86 (m, lH), 3.68 (s, 3H), and 3.51 $(m, 1H)$ ppm; ir (KBr) 3420, 1732, 1715, 1490, 1438, 1080, 973, 908, 890, and 820 cm⁻¹; MS m/e 386 $(M).$
- 8. The diastereoisomeric mixture of the allylic alcohol <u>3a</u> and its isomer was easily separated by column chromatography on silica gel. The less polar isomer $(R_f 0.30, EtOAC-cyclehexane =$ $3: 2$) was assigned as the 15 β -isomer and the more polar one as the 15 α -isomer (3a) on the basis of the known chromatographic behavior of the natural prostaglandins, see N. H. Andersen, J. Lipid Res., 40, 316 (1969).
- 9. Pmr $(CDC1₃)$ δ 7.06 (m, 3H), 5.57 (m, 2H), 4.08 (m, 1H), 3.92 (m, 1H), and 3.51 (m, 1H) ppm; ir (KBr) 3400, 1702, 1490, 1090, 1080, 978, 915, 895, and 838 cm⁻¹; MS m/e 372 (M).

(Received in Japan 14 December 1979)